sábado, 29 de enero de 2011

DISTRIBUCIÓN EXPONENCIAL

Problema 01:

Un componente eléctrico tiene una vida media de 8 años. Si  su vida útil se distribuye en forma exponencial.

a)Cuál debe ser el tiempo de garantía que se debe otorgar, si se desea reemplazar a lo más el 15 % de los componentes que fallen dentro de este periodo?



Problema 02:


Problema 03:
En una tienda departamental el tiempo promedio de espera para ser atendido en cajas al pagar la mercancía es de 7 minutos. Determine la probabilidad de que: a) Un cliente espere menos de 4 minutos. b) Un cliente espere más de 9 minutos.

Problema 04:
La vida media de un televisor “s” es de 7 años. si esta vida puede considerarse como una variable aleatoria distribuida en forma exponencial,
a) ¿Cuál es la probabilidad de que un televisor de este tipo falle después del 7°-año de uso?
b) si se toma una muestra aleatoria de estos 10 televisores “S”, ¿Cuál es la probabilidad de que un televisor de esta muestra dure más de 12 años?



Problema 05:

Problema 06:
El periodo de vida en años de una estufa de cierta marca tiene una distribución exponencial con un promedio de falla de μ=6 años. a) Cuál es la probabilidad de que una estufa falle después del 4 año? b) Cuál debe ser el tiempo de garantía que deberá tener la estufa si se desea que a lo más el 20 % de las estufas fallen antes de que expire su garantía?

Problema 07:

DISTRIBUCIÓN EXPONENCIAL El periodo de vida en años de un interruptor eléctrico tiene una distribución exponencial con un promedio de falla de μ=2 años ¿Cuál es la probabilidad de que un interruptor falle después del 2do año?

Problema 08:
Los administradores de cierta industria han notado que su producto tiene un tiempo de duración que puede considerarse una variable aleatoria con distribución exponencial con una vida media de 5 años. a)¿cuál es la probabilidad de que al elegir un artículo de dicha producción dure más de 10 años? b)¿si el tiempo de garantía asignado por los administradores es de 1 año, qué porcentaje de sus productos tendrá que reparar la industria durante el periodo de garantía?

Problema 09:
Una lavadora MABE tiene una vida media de 10 años. Si la vida útil de ese motor puede considerarse como una variable aleatoria distribuida en forma exponencial. ¿Cuál debe ser el tiempo de garantía que deben tener dichas lavadoras si desea que a los más 20 % de estas fallen antes de que expire su garantía?

Problema 10:
Un motor eléctrico tiene una vida media de 6 años. Si la vida útil de este tipo de motor puede considerarse como una variable aleatoria distribuida en forma exponencial. ¿Cuál debe ser el tiempo de garantía que debe tener el motor si se desea que a lo más el 15 % de los motores fallen antes de que expire su garantía?.

Problema 11:
El tiempo en que una computadora comercial permanece actualizada, se distribuye exponencialmente con una valor promedio de 2 años. ¿Cuál es la probabilidad de que una computadora comercial que se compra el día de hoy, permanezca actualizada dentro de 3 años?

Problema 12:
El tiempo de vida de un reo en cárceles de México a partir de su ingreso a algún reclusorio, se distribuye exponencialmente con un valor promedio 9 años. ¿Encuentre la probabilidad de que un reo que ingreso al reclusorio norte del D, F hace 15 años, siga con vida?